Tillinghast secondary tilts

Emilio E. Falco

15 June 2009
Sensoft analysis of TWFS images yields a prescription for adjustments of the secondary as "tilt M2 East by $\mathrm{X}^{\prime \prime}$ and North by $\mathrm{Y}^{\prime \prime}$." I calculate the numbers of turns of 2 of the 3 bolts that tilt M2 with respect to the optical axis to yield the Sensoft prescription.

Figure 1 is a low-quality reproduction of a photograph of a full-scale drawing of the back of the plate that holds M2. The 3 adjustment bolts are labeled $\mathrm{A}-\mathrm{C}$, and N marks the north direction. Figure 2 is a copy of a cut-out diagram (reduced from full-scale) along line AA in Figure 1, showing M2 and bolt A. Figure 3 is a diagram of the plate shown in Figure 1, with labels for the 3 bolts, the cardinal directions, and 2 known angles I use in the calculations. Various axes are also shown.

The Sensoft prescription gives the rotation angles δ_{E} (tilt M2 East) and δ_{N} (tilt M2 North). These are small angles in radians, so I treat them as vectors. When a bolt is turned, M2 rotates about the axis formed by the other 2 bolts. I'll leave bolt A fixed, as we have 2 degrees of freedom. I picked A to remain fixed, because access to B and C is easier with the telescope tilted toward the mezzanine. Turning bolt $\mathrm{B}(\mathrm{C})$ then rotates M2 about axis AC (AB). These axes are shown in Figure 3 in green and red, respectively. In matching colors, axes parallel to $A C$ and $A B\left(A^{\prime} C^{\prime}\right.$ and $A^{\prime \prime} B^{\prime}$, respectively) are shown through the center of M2. These define angles α (NA') and β (NA") which relate small rotations about AB and AC to correspondingly small rotations about NS and EW:

$$
\begin{align*}
\delta_{E} & =\delta_{B} \cos (\alpha)+\delta_{C} \cos (\beta) \\
\delta_{N} & =\delta_{B} \sin (\alpha)-\delta_{C} \sin (\beta) \tag{1}
\end{align*}
$$

Figure 3 shows vectors representing δ_{B} (green) and δ_{C} (red). For small motions of the bolts, in the small-angle approximation δ_{B} and δ_{C} satisfy:

$$
\delta_{B}=\frac{h_{B}}{R}, \quad \delta_{C}=\frac{h_{C}}{R}
$$

where h_{B} and h_{C} are bolt displacements (positive away from M2) and R is the distance from each bolt to its corresponding axis of rotation (e.g., B to AC), which in turn is equal to the radius of the bolt circle multiplied by 1.5 , from the geometry. The signs of δ_{B} and δ_{C} are such that positive h_{B} and h_{C} produce CCW rotations about AC and AB, respectively. These displacements satisfy:

$$
h_{B}=\frac{T_{B}}{P_{m m}}, \quad h_{C}=\frac{T_{C}}{P_{m m}}
$$

where T_{B} and T_{C} are the numbers of CW turns of the bolts and $P_{m m}$ is the pitch of the bolts in turns per mm.

Solving eqn. 1 for δ_{B} and δ_{C} yields:

$$
\begin{align*}
& T_{B}=R P_{m m} \frac{\delta_{E} \sin (\beta)+\delta_{N} \cos (\beta)}{\sin (\alpha+\beta)} \\
& T_{C}=R P_{m m} \frac{\delta_{E} \sin (\alpha)-\delta_{N} \cos (\alpha)}{\sin (\alpha+\beta)} \tag{2}
\end{align*}
$$

The quantities required to calculate T_{B} and T_{C} are:

$$
\begin{array}{r}
\alpha=7.55^{\circ} \\
\beta=52.45^{\circ} \\
R=1.5 \times 187 . \mathrm{mm} \\
P_{m m}=\frac{24 \text { turns } / \mathrm{inch}}{25.4 \mathrm{~mm} / \mathrm{inch}}
\end{array}
$$

The Sensoft prescription based on the best data from 23 March 2009 is:

$$
\begin{array}{r}
\delta_{N}=80.2^{\prime \prime} \\
\delta_{E}=188.2^{\prime \prime}
\end{array}
$$

Using the equations above and scaling the prescription from arcsec to radians, I obtained:

$$
\begin{array}{r}
T_{B}=0.294 \\
T_{C}=-0.081
\end{array}
$$

These are very small turns, so I conclude that we are reasonably close to a good collimation.
We will test TWFS further by turning bolts one at a time and acquiring images to verify that Sensoft yields the appropriate corrections.

Fig. 1.-

Fig. 2.-

Fig. 3.-

